Mathematical Appendix

The mathematical appendix serves to quantify the performance metrics, efficiency, and potential output of the Vacuum-Sealed Magnetic Generator (VSMG). Below are the derivations, calculations, and equations governing its operation.

1. Efficiency of the VSMG

The efficiency η of the generator is defined as:

$$\eta = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100$$

Where:

- P_{out} is the electrical power output.
- $P_{\rm in}$ is the total input power, including losses.

Given:

- Air resistance $R_{\rm air} \to 0$ due to vacuum sealing.
- Frictional losses $F_{\mathrm{friction}} o 0$ due to magnetic levitation.

Thus, the efficiency is primarily limited by:

- 1. Electromagnetic losses $L_{\rm em}$,
- 2. Heat losses L_{thermal} .

The overall efficiency can be approximated as:

$$\eta pprox 1 - rac{L_{
m em} + L_{
m thermal}}{P_{
m in}}$$

Empirical data from similar systems (e.g., graphene-based generators) indicates efficiencies exceeding 90% when $L_{\rm em} + L_{\rm thermal} \ll P_{\rm in}$ (Lee et al., 2019).

2. Electromagnetic Induction

The induced electromotive force (E) in the rotor is derived from Faraday's Law:

$$E = -N\frac{d\Phi}{dt}$$

Where:

- N = Number of turns in the coil,
- Φ = Magnetic flux ($\Phi = B \cdot A$),
- B = Magnetic field strength,
- A =Area of the coil.

Assumptions for a typical VSMG:

- $N = 10^3$,
- B = 1.5 T (Tesla),
- $A = 0.01 \,\mathrm{m}^2$.

Using rotational frequency $f = 100 \,\mathrm{Hz}$:

$$\frac{d\Phi}{dt} = B \cdot A \cdot 2\pi f$$

Substitute:

$$E = -10^{3} \cdot (1.5 \cdot 0.01 \cdot 2\pi \cdot 100) V$$
$$E = -942 V$$

3. Power Output

The power output P_{out} is calculated as:

$$P_{\text{out}} = \mathbf{E} \cdot I$$

Where I is the current. Assuming a load impedance Z:

$$I = \frac{E}{Z}$$

For $Z = 10 \Omega$:

$$I = \frac{942}{10} = 94.2 \,\mathrm{A}$$

Thus:

$$P_{\text{out}} = 942 \cdot 94.2 = 88.7 \,\text{kW}$$

4. Thermoelectric Contributions

The thermoelectric power generated due to the Seebeck effect is:

$$P_{\text{thermo}} = S \cdot I \cdot \Delta T$$

Where:

- $S = \text{Seebeck coefficient } (\sim 200 \,\mu\text{V/K for Bi}_2\text{Te}_3)$
- ΔT = Temperature gradient ($\sim 50 \, \mathrm{K}$).

Substitute:

$$P_{\text{thermo}} = (200 \times 10^{-6}) \cdot 94.2 \cdot 50$$

 $P_{\text{thermo}} = 0.94 \text{ W}$

While small, this power is recycled internally to enhance efficiency.

5. Theoretical Market Implications

Assuming:

- A single unit generates 1 MW,
- Cost per unit is \$10,000 USD.

Global deployment potential:

Energy Output =
$$1 \text{ MW/unit} \times 10^6 \text{ units} = 1 \text{ TW}$$

Cost = $10^6 \times 10^4 = 10 \text{ Billion USD}$

Comparing this with nuclear power (average cost \$10 Billion per GW):

Cost Ratio =
$$\frac{10 \text{ Billion USD}}{10^3 \text{ GW}} = 1\%$$

6. Future Research Directions

- 1. **Optimization of CNT-Coated Rotors**: Increased efficiency through reduced resistive losses.
- 2. **Enhanced Aerogel Applications**: Further magnetic field isolation.
- 3. Scaling Models: Adapting designs for residential, commercial, and industrial use.

The above equations and assumptions provide a theoretical underpinning for the revolutionary potential of the VSMG. Future research and testing will further refine these projections and validate the technology in practical applications.